-Figures - uploaded by Rahmah JoharAuthor contentAll figure content in this area was uploaded by Rahmah JoharContent may be subject to copyright. Discover the world's research25+ million members160+ million publication billion citationsJoin for free 1 ALAT PERAGA MATEMATIKARahmah Johar Dosen Program Studi Pendidikan Matematika FKIP Universitas Syiah Kuala A. PENDAHULUAN Matematika memiliki objek kajian yang abstrak, sehingga kebenarannya tidak dapat hanya ditentukan melalui pengamatan tetapi dibuktikan secara deduktif. Dikarenakan objek kajian matematika yang abstrak ini, banyak siswa yang kesulitan mempelajari matematika. Oleh karena itu, dalam proses pembelajaran, terutama pada pendidikan dasar dan menengah, hendaknya guru membantu siswa memahami objek matematika yang abstrak melalui pengamatan dan bantuan alat peraga. Banyak sumber yang menjelaskan bahwa alat peraga berperan sebagai jembatan dari konkret ke abstrak Heddens dalam Marshall, 2008 dan Kelly, 2006. Dalam hal ini bahasa memainkan peranan penting dalam membantu siswa untuk membuat jembatan dari konkret ke abstrak tersebut Kelly, 2006. Melalui alat peraga dapat dikembangkan interaksi di kelas, sehingga pembelajaran matematika menjadi menyenangkan dan pemahaman siswa menjadi lebih meningkat. Alat peraga sebagai bagian dari sumber belajar hendaknya disediakan oleh guru untuk mengembangkan sikap, keterampilan, dan pengetahuan siswa dalam mempelajaran matematika, sesuai dengan amanat kurikulum 2013 Kementerian Pendidikan dan Kebudayaan, 2012. The National Council of Teachers of Mathematics NCTM juga memberikan penekanana tentang pentingnya penggunaan alat peraga dan representasi visual dalam pembelajaran matematika NCTM, 2000, di samping teknologi lainnya. Dalam penggunaan alat peraga, guru perlu mengetahui kapan, mengapa, dan bagaimana menggunakannya. Jika tidak, siswa akan menganggap alat peraga sebagai “mainan” pada saat pembelajaran matematika. Bahkan jika penggunaan alat peraga tidak dirancang dengan baik dan tidak diiringi dengan pemahaman guru yang baik terhadap materi yang terkait dengan alat peraga, akan berakibat pada kesalahan konsep. Penelitian Marshall 2008 terhadap guru SD dan SMP di New South Wales, Australia, menemukan Makalah disampaikan pada Seminar Alat Peraga di STAIN Malikussaleh, tanggal 23 September 2013 2 bahwa ada guru yang memberikan respon bahwa “sometimes kids will pick up a wrong’ concept from a manipulative so their use needs guidance and supervision and follow-up, then builds better understanding and concepts”; selain itu “the students sometimes misunderstand the point of the lesson if it is always explained using the same manipulatives”. Kurangnya kemampuan guru dalam pemahaman materi juga akan terlihat ketika guru hanya menggunakan alat perga untuk membuka pelajaran namun tidak sampai pada konsep ataupun rumus matematika yang sedang dipelajari. Sebagai contoh, berdasarkan pengamatan penulis terhadap guru mengajar dan diskusi dengan guru dalam beberapa kali pelatihan, untuk mengenalkan konsep gradien guru menunjukkan alat peraga kayu yang disandarkan pada dinding, atau pegangan pada tangga. Namun, setelah itu guru melupakan alat peraga’ langsung menuliskan rumus bahwa gradien garis melalui titik Ax1, y1 dan B x2,y2 adalah . Kondisi ini menunjukkan kurangnya pemahaman guru dalam merancang aktivitas secara bertahap mulai dari alat peraga yang konkret lalu gambar atau model dari gradient sehingga siswa menemukan sendiri rumus gradien. Berdasarkan kurikulum 2013, pelaksanaan pembelajaran hendaknya menggunakan pendekatan saintifik, yang terdiri atas kegiatan observing mengamati, questioning menanya, associating mengaitkan/menalar, experimenting mencoba, dan networking menjalin kerja sama/jejaring. Dengan demikian, penggunaan alat peraga hendaknya diawali dengan aktivitas yang meminta siswa mengamati masalah/kasus ataupun contoh dalam kehidupan sehari-hari, yang selanjutnya dikembangkan dan diselidiki dengan bantuan alat peraga. Berdasarkan uraian di atas, penggunaan alat peraga perlu dirancang, dilaksanakan, dan dievaluasi keefektifannya dalam meningkatkan pemahaman siswa terhadap matematika. Makalah ini membahas tentang peranan dan tujuan alat peraga, hal-hal yang perlu diperhatikan dalam membuat dan menggunakan alat peraga matematika, dan contoh alat peraga dalam pembelajaran matematika. B. PEMBAHASAN 1. Peranan dan Tujuan Alat Peraga dalam Pembelajaran Matematika 3 Kelly 2006 mendefinisikan alat peraga sebagai tangible object, tool, or model that may be used to clearly demonstrate a depth of understanding about a specified mathematical topic. Alat peraga merupakan media yang berkaitan langsung dengan penanaman konsep Johar 2006 dan meletakkan ide-ide dasar yang melandasi suatu konsep Suherman dan Winataputra, 1992. Sebagai contoh model kubus digunakan sebagai alat peraga untuk menanamkan konsep titik sudut pada kubus, rusuk kubus, dan sisi kubus. Setelah siswa mendapat kesempatan terlibat dalam proses pengamatan dengan bantuan alat peraga, diharapkan akan tumbuh minat belajar matematika dan meningkatkan pemahaman matematika. Secara umum, menurut Ahmadi 1991 123 tujuan penggunaan alat peraga dalam proses belajar mengajar adalah sebagi berikut a. Pengajaran akam menarik perhatian siswa sehingga dapat menumbuhkan motivasi belajar; b. Bahan pengajaran akan lebih jelas maknanya sehingga dapat lebih dipahami oleh siswa, dan memungkinkan siswa menguasai tujuan pengajaran dengan baik; c. Metode belajar akan lebih bervariasi, tidak semata-mata komunikasi verbal melalui penuturan kata-kata oleh guru, sehingga siswa tidak bosan dan guru tidak kehabisan tenaga; d. Siswa lebih banyak melakukan kegiatan belajar, sebab tidak hanya mendengarkan uraian guru, tetapi juga timbul aktivitas lain seperti mengamati, melakukan, mendemontrasikan dan sebagainya Sadirman 1998 145 menyatakan tujuan dari penggunaan alat peraga dalam pembelajaran adalah a. Mengatasi keterbatasan ruang, waktu, dan daya indra b. Dapat menimbulkan kegiatan belajar bagi siswa c. Memungkinkan interaksi yang lebih panjang, antara siswa dengan lingkungan nyata d. Memungkinkan siswa belajar sendiri menurut minat dan kemampuannya e. Dapat memberi perangsang yang sama dan menimbulkan persepsi yang sama pula. Penelitian Marshall 2008 terhadap 155 guru SD dan SMP di New South Wales, Australia, menemukan bahwa pada umumnya guru mengemukakan manfaat alat peraga dalam pembelajaran matematika adalah, membantu dalam menvisualisasikan konsep matematika dengan lebih konkret, memberikan kesempatan kepada siswa untuk hands-on learning’ atau terlibat dalam mengerjakan matematika, dan memberikan kesempatan 4 kepada siswa untuk merasakan belajar matematika dengan cara yang menyenangkan, dan meningkatkan motivasi belajar siswa. Menurut Tim MKPBM 2001 dengan menggunaan alat peraga dalam pembelajaran matematika maka 1 proses belajar mengajar matematika menjadi lebih menarik dan 2 hubungan antara konsep matematika yang abstrak dengan benda-benda di sekitar siswa akan lebih dapat dipahami. Selanjutnya Suherman dan Winataputra 1992 menjelaskan bahwa dengan bantuan alat peraga siswa dapat menarik generalisasi atau kesimpulan dalam matematika. Shaw 2002 mengemukakan bahwa alat peraga dapat digunakan untuk 1 membangun pemahaman dan konsep, dan 2 memberikan pengalaman kepada siswa untuk terlibat, berkomuniksai, dan mengalami langsung. Selain manfaat alat peraga di atas, menurut Tim MKPBM 2001 alat peraga dapat digunakan dalam beberapa manfaat, yaitu sebagai berikut. a. Pembentukan konsep b. Pemahaman konsep c. Latihan dan penguatan d. Pelayanan terhadap individual, termasuk pelayanan terhadap anak lemah dan anak berbakat e. Pengukuran, alat peraga digunakan sebagai alat ukur f. Pengamatan dan penemuan sendiri ide-ide dan relasi-relsi baru serta penarikan kesimpulannya g. Pemecahan masalah h. Pendorong untuk berfikir, berdiskusi, dan berpartisipasi aktif Manfaaat alat peraga juga 2. Hal-Hal yang Perlu Diperhatikan dalam Membuat dan Menggunakan Alat Peraga Matematika Mengajar matematika yang efektif memerlukan pemahaman tentang apa yang siswa ketahui dan perlukan untuk belajar dan kemudian memberikan tantangan dan dukungan agar mereka dapat mempelajari matematika dengan baik NCTM, 2000. Alat peraga merupakan salah satu yang dibutuhkan oleh siswa dalam belajar matematika. Alat peraga dapat berupa benda riil konkret, gambar, atau diagram. Oleh karena itu guru 5 perlu mempersiapkan alata peraga dengan cara mencari bahkan membuat alat peraga dan merancang penggunaannya dalam proses belajar. Tim MKPBM 2001 menjelaskan beberapa hal yang perlu diperhatikan dalam pembuatan alat peraga, yaitu sebagai berikut. a. Tahan lama dibuat dari bahan-bahan yang cukup kuat b. Bentuk dan warnanya menarik c. Sederhana dan mudah dikelola tidak rumit d. Ukurannya sesuai seimbang dengan ukuran fisik siswa e. Dapat menyajikan dalam bentuk riil, gambar, atau diagram konsep matematika f. Sesuai dengan konsep matematika g. Merupakan dasar untuk tumbuhnya konsep yang abstrak Penggunaan alat peraga dalam pembelajaran matematika menurut Kelly 2006 hendaknya memperhatikan empat hal, yaitu sebagai berikut. a. Alat peraga bertujuan untuk membantu siswa belajar lebih efisien dan efektif, bukan sebagai mainan’. b. Alat perga hendaknya disesuaikan dengan tujuan pembelajaran matematika c. Alat peraga perlu disertai dengan penjelasan oleh guru tentang cara penggunaannya agar bermanfaat dalam menyelesaikan masalah dan komunikasi matematis d. Alat peraga digunakan sebagai bagian dari kegiatan eksplorasi matematika. Berdasarkan uraian di atas, guru perlu mengetahui kapan, mengapa, dan bagaimana menggunakan alat peraga agar tujuan pembelajaran matematika dapat tercapai. Guru sebaiknya merancang aktivitas yang dimulai dengan konteks dalam kehidupan sehari-hari, lalu bantuan alat peraga, model dari alat peraga, sampai pada penemuan konsep matematika yang bersifat formal abstrak. Aktivitas ini dalam Pendidikan Matematika Realistik PMR dikenal dengan Learning Trajectory lintasan Belajar. Lintasan belajar ini digambarkan seperti gunung es ice-berg di bawah. 6 Dari gambar gunung es di atas, untuk menemukan prosedur menjumlahkan bilangan dua angka, pembelajaran diawali dengan berbagai aktivitas yang terkait langsung dengan kehidupan sehari-hari, seperti menjumlahkan penumpang dari gerbong-gerbong kereta api. Selanjutnya melalui sajian visual atau tiruan benda nyata yang mengikuti struktur tertentu. Berikutnya penjumlahan bilangan yang dituliskan pada kartu bilangan yang menggunakan struktur sepuluh atau struktur lima, dan satuan. Terakhir siswa menemukan cara menjumlahkan dengan bantuan garis bilangan number line dengan lompat sepuluh atau teknik puluhan dengan puluhan, satuan dengan satuan, dan sebagainya. Sehingga, untuk menyelesaikan 47 + 28, dalam pembelajaran diharapkan muncul beberapa strategi siswa, seperti 47+20+8, atau 40+20+7+8, atau 47+10+10+3+5, dan sebagainya Johar, 2008. Untuk penemuan luas persegipanjang, lintasan belajar untuk siswa SD dimulai dari satuan tidak baku Johar, 2008, sedangkan untuk siswa SMP aktivitas menggunakan satuan tidak baku bukan bukan menjadi aktivitas utama nurazmi, 2013, seperti gambar berikut. 7 Lintasan belajar untuk siswa SD Johar, 2008 Luas = p x l FormalBuilding StonesModel materialReal world situationLintasan belajar untuk siswa SMP Nurazmi, 2013 3. Contoh Alat Peraga dalam Pembelajaran Matematika Pada bagian ini dijelaskan alat peraga untuk pembelajaran matematika di SD atau SMP. Beberapa contoh disertai dengan Lembar kegiatan Siswa. Hal ini diperlukan karena pelaksanaan pembelajaran menurut kurikulum 2013 hendaknya menggunakan pendekatan saintifik, yang terdiri atas kegiatan observing mengamati, questioning menanya, associating mengaitkan/menalar, experimenting mencoba, dan networking menjalin kerja sama/jejaring. Dengan demikian, penggunaan alat peraga hendaknya diawali dengan aktivitas yang meminta siswa mengamati masalah/kasus 8 ataupun contoh dalam kehidupan sehari-hari, yang selanjutnya dikembangkan dan diselidiki dengan bantuan alat peraga. a. Alat peraga operasi bilangan bulat 1 Alat Peraga Boneka Petunjuk Contoh - Tempatkan Boneka pada titik 3, dengan posisi standar -Maju 2 langkah - Tempatkan Boneka pada bilangan 3, dengan posisi standar - Boneka balik kanan, lalu maju 2 langkah - Tempatkan Boneka pada titik 3, dengan posisi standar - Mundur2 langkah - Tempatkan Boneka pada bilangan 3, dengan posisi standar - Balik kanan, lalu mundur2 langkah - Tempatkan Boneka pada bilangan -1, dengan posisi standar - Balik kanan, lalu maju 4 langkah Bandingkan hasil pengurangan dengan hasil penjumlahan, adakah hasilnya yang sama? Apa yang dapat disimpulkan? - Menjumlah berarti “maju” - Mengurang berarti “mundur” - Jika bilangan positif maka boneka dalam posisi standar menghadap ke bilangan positif - Jika bilangan negatif maka boneka balik kanan 9 2 Alat Peraga Kancing Baju Petunjuk A. Penjumlahan dan Pengurangan Masukkan 3 KP Masukkan lagi 2 KP Masukkan 5 KP Masukkan 3 KH B. Perkalian Petunjuk n x r artinya - Berapa kali memasukkan sebanyak r kancing jika n positif - Berapa kali mengambil sebanyak r kancing jika n negatif Kancing Putih KP mewakili +1 Kancing Hitam KH mewakili -1 “Menjumlah” berarti memasukkan kancing “Mengurang” berarti mengambil kancing 10 Dua kali mengambil 3 KP Karena kancing belum ada, buat 6 pasang KP dan KH Dua kali mengambil 3 KH Karena kancing belum ada, buat 6 pasang KP dan KH b. Alat perga operasi pada bilangan pecahan Alat peraga yang dijelaskan pada bagian ini adalah alat perga untuk perkalian dan pembagian pecahan, sedangkan penjumlahan dan pengurangan pecahan dianggap sudah dikuasai. 1 Perkalian Pecahan Sebelum menggunakan alat peraga, sebaiknya diberikan masalah kontekstual, seperti “Ani memiliki bagian bolu. Lalu, dari bagian tersebut diberikan kepada temannya. Berapa bagian bolu yang diterima temannya?” Dalam matematika masalah di atas dapat disimbolkan dengan = …... 11 Alat peraga yang dapat digunakan adalah dua lembar plastik transparan. Plastik transparan pertama menunjukkan bolu yang dimiliki Ani, yaitu, yang diarsir secara horizontal, seperti gambar di bawah. Plastik transparan kedua menunjukkan bolu yang akan diberikan kepada temannya bagian, yang diarsir secara vertikal, seperti gambar di bawah Lalu impitkan kedua plastik transparan, sehingga diperoleh gambar seperti di bawahBerikan contoh pecahan lain kepada siswa, seperti , , minta siswa menentukan hasilnya dengan menggunakan alat peraga. Terakhir, minta siswa mengamati pola, sehingga siswa memperoleh kesimpulan 2 Pembagian Pecahan Konteks yang sesuai dengan pembagian pecahan misalnya “Rina memiliki 3 m pita. Untuk membuat bunga, dibutuhkan pita berukuran meter. Berapa potong pita yang diperoleh Rina?” Masalah di atas dapat juga dinyatakan sebagai “berapa an di dalam 3?” atau 3 = …. Alat peraga yang digunakan adalah model pita, sebagai pecahan, seperti di bawah. 12 Karena ada 6 potong an di dalam 3 meter pita, maka 3 = 6 Berikan pecahan lain yang bervariasi, seperti = ...... 2 = …… Gunakan konteks membagi kue untuk menentukan hasilya = ...... Ada berapa an di dalam ? Jawabnya adalah Minta siswa mengamati pola hubungan antara pecahan yang dibagi dengan hasil bagi. Minta siswa mendiskusikan kaitan proses memperoleh hasil pembagian pecahan dengan perkalian pecahan. Diharapkan siswa sendiri yang menyimpulkan bahwa membagi pecahan dapat dicari dengan mengalikan pecahan, asalkan pecahan yang kedua dibalik, sehingga dapat disimbolkan sebagai c. Alat peraga Luas Bangun Datar a Luas jajargenjang Salah satu cara menemukan luas jajargenjang adalah dengan menggunakan pendekatan luas persegipanjang. Salah satu ujung jajargenjang dipotong dan ditempelkan pada ujung lainnya sehingga membentuk persegipanjang seperti gambar berikut. Luas jajargenjag ABCD = Luas persegipanjang D’C’CD = a x t b Luas lingkaran Salah satu usaha untuk menemukan rumus luas lingkaran adalah dengan menggunakan alat perga berupa lingkaran yang terbuat dari keras yang dipotong menjadi beberapa juring. Misalnya 16 buah juring, 32 buah, dan seterusnya. Semakin banyak juring yang dibuat semakin mendekati kebenaran rumus untuk luasnya. Juring lingkaran 13 tersebut dapat disusun secara kreatif oleh siswa misalnya berbentuk persegi panjang, segitiga, dan trapesium seperti terlihat pada gambar berikut ini. Dalam pembelajaran, bagian penting yang perlu dibimbing oleh guru adalah mengaitkan jari-jari dan keliling lingkaran dengan luas bangun yang terbentuk. d. Alat perga volume bangun ruang 1 Volume Balok Dasar penemuan rumus volume bangun ruang adalah melalui rumus volum balok. Siapkan kubus satuan yang akan diisi untuk memenuhi balok, seperti gambar di bawah. Minta siswa mendiskusikan LKS berikut. Cara menghitung banyaknya kubus satuan 14 2 Volume limas Karena ukuran ketiga limas sama, maka volume ketiga limas tersebut juga sama. Hubungan volume limas tersebut dengan volume kubus yaitu Volume kubus = 3 x volume limas Volume limas = volume kubus = x s3 ingat volume kubus = s3 = x s2 x s ingat s2 merupakan luas alas kubus dan s merupakan tinggi kubus =x luas alas x tinggi e. Alat peraga pembuktian teorema Phytagoras. Siapkan potongan papan atau kertas. Dengan cara coba-coba, minta siswa memindahkan potongan papan dari persegi yang ada pada sisi siku-siku ke persegi yang ada pada sisi miring. Tampak bahwa semua potongan yang ada pada persegi di sisi siku-siku memenuhi persegi pada sisi miring, seperti gambar berikut. 15 Cara 1 Cara 2 Cara 3 f. Alat Peraga Bilangan Akar Alat peraga yang di atas hanya sebagaian dari alat peraga matematika. Pada lampiran dapat dilihat daftar alat peraga yang tersedai pada Labor P4TK matematika di Yogyakarta. C. PENUTUP Penggunaan alat peraga matematika dalam proses pembelajaran dapat membantu siswa memahami konsep dasar dalam matematika, menemukan rumus, menemukan sifat, menemukan generalisasi dari pola, dan sebagainya. Guru harus dapat menentukan alat perga yang sesuai dengan topik yang daiajarkan dan menggunakannya secara efektif dalam proses belajar matematika. Sesuai dengan kemajuan teknologi, sumber belajar yang dapat digunakan oleh guru dalam proses belajar matematika tidak hanya alat peraga, tapi dapat berupa animasi yang disajikan pada power point, software matematika seperti Cabri, Geometer sketchpad, autograph, lingkungan, media cetak maupun elektronik. DAFTAR PUSTAKA Ahmadi, A. 1991. Teknik Belajar Mengajar. Jakarta Rineka Cipta. Johar, Rahmah. 2008 The Development of PMRI in Aceh. Makalh disajikan pada Disajikan pada Seminar Internasional 4th ICMSA di Banda Aceh Tanggal 9 – 11 Juni 2008 16 Johar, Rahmah 2008. Pendekatan Matematika Realistik Indonesia PMRI dan Relevansinya dengan KTSP. Makalah disampaikan pada workshop guru SD/MI di STAIN Malikussaleh pada tanggal 27 November 2008. Kelly, C. A. 2006 Using Manipulatives in Mathematical Problem Solving A Performance-Based Analysis. In The Montana Mathematics Enthusiast, ISSN 1551-3440, Vol. 3, pp. 184-193 Kementerian Pendidikan dan Kebudayaan. 2012. Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 81a tahun 2013 tentang Implementasi Kurikulum. Jakarta. Marshal, L. 2008 Exploring the Use of Mathematics Manipulative Materialsin Is It What We Think It Is? in the Proceedings of the EDU-COM 2008 International Conference. Edith Cowan University, Perth Western Australia, 19-21 November 2008. NCTM. 2000. Principle and Standards for School Mathematics USA. Nurazmi. 2013. Penerapan Pendekatan Pembelajaran Matematika Realistik untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis dan Sikap Siswa SMP. Tesis. Universitas Syiah Kuala. Sadirman. 1998. Media Pendidikan dan Kontek Pembelajaran. Jakarta Rajawali. Shaw, J. M. 2002 Manipulatives Enhance the Learning of Mathematics. In Retrieved on 19 September 2013. Suherman, E. dan Winataputra, U. 1992. Strategi Belajar Mengajar Matematika. Modul UT. Departemen Pendidikan dan Kebudayaan. Jakarta Tim MKPBM 2001 Strategi Pembelajaran Matematika Kontemporer. Modul JICA. UPI Bandung van de Walle. J. 2007 Matematika Sekolah Dasar dan Menengah Pengembangan Pengajaran. Alih Bahasa Suyono. Jakarta Erlangga. ResearchGate has not been able to resolve any citations for this A. KellyThis article explores problem solving in elementary classrooms while focusing on how children use perform tasks manipulatives and/or tools in problem solving while working on mathematical tasks. Ways for teachers to assess children's learning through performance-based tool manipulative use will also be examined and suggested. Current research reveals that teachers need to teach and assess children's mathematical knowledge in ways that will allow them to show perform what they really understand. And, teachers must be able to see beyond obvious correct or incorrect answers into children's thinking processes by testing with "tests that allow students the opportunity to show what they know" Van de Walle, 2003, p. 73.Pendekatan Matematika Realistik Indonesia PMRI dan Relevansinya dengan KTSPRahmah JoharJohar, Rahmah 2008. Pendekatan Matematika Realistik Indonesia PMRI dan Relevansinya dengan KTSP. Makalah disampaikan pada workshop guru SD/MI di STAIN Malikussaleh pada tanggal 27 November Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 81a tahun 2013 tentang Implementasi KurikulumKementerian Pendidikan Dan KebudayaanKementerian Pendidikan dan Kebudayaan. 2012. Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 81a tahun 2013 tentang Implementasi Kurikulum. the Use of Mathematics Manipulative Materialsin Is It What We Think It IsL MarshalMarshal, L. 2008 Exploring the Use of Mathematics Manipulative Materialsin Is It What We Think It Is? in the Proceedings of the EDU-COM 2008 International Conference. Edith Cowan University, Perth Western Australia, 19-21 November Pendekatan Pembelajaran Matematika Realistik untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis dan Sikap Siswa SMP. TesisNurazmiNurazmi. 2013. Penerapan Pendekatan Pembelajaran Matematika Realistik untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis dan Sikap Siswa SMP. Tesis. Universitas Syiah Pendidikan dan Kontek PembelajaranSadirmanSadirman. 1998. Media Pendidikan dan Kontek Pembelajaran. Jakarta Enhance the Learning of MathematicsJ M ShawShaw, J. M. 2002 Manipulatives Enhance the Learning of Mathematics. In Retrieved on 19 September Belajar Mengajar Matematika. Modul UT. Departemen Pendidikan dan KebudayaanE SuhermanU WinataputraSuherman, E. dan Winataputra, U. 1992. Strategi Belajar Mengajar Matematika. Modul UT. Departemen Pendidikan dan Kebudayaan. JakartaStrategi Pembelajaran Matematika Kontemporer. Modul JICA. UPI Bandung van de WalleMkpbm TimTim MKPBM 2001 Strategi Pembelajaran Matematika Kontemporer. Modul JICA. UPI Bandung van de Walle. J. 2007 Matematika Sekolah Dasar dan Menengah Pengembangan Pengajaran. Alih Bahasa Suyono. Jakarta Matematika Realistik Indonesia PMRI dan Relevansinya dengan KTSP. Makalah disampaikan pada workshop guru SD/MI di STAIN Malikussaleh pada tanggal 27Rahmah JoharJohar, Rahmah 2008. Pendekatan Matematika Realistik Indonesia PMRI dan Relevansinya dengan KTSP. Makalah disampaikan pada workshop guru SD/MI di STAIN Malikussaleh pada tanggal 27 November 2008.
VideoMedia Pembelajaran Matematika video owner: Yesica Fridiani
Adapunfungsi alat peraga adalah sebagai berikut26 : 24 T. Wakiman, Alat Peraga Pendidikan Matematika I (Yogyakarta: Jurusan Pendidikan Dasar dan Prasekolah (PDPS) Fakultas Ilmu Pendidikan Universitas Negeri Yogyakarta, 2001), hlm. 9 25 Ibid, hlm. 9 26 DR. NMZI.